


Apache Web Server Hardening

& Secur ity Guide

B y C h a n d a n K u m a r | L a s t u p d a t e d : A u g u s t 1 3 , 2 0 1 6

A practical guide to secure and harden Apache Web Server.

1 . Introduct ion

The Web Server is a crucial part of web-based applications. Apache Web

https://geekflare.com/
https://www.siteground.com/go/geekflare

http://www.facebook.com/share.php?u=https%3A%2F%2Fgeekflare.com%2Fapache-web-server-hardening-security%2F%3Futm_source%3Dfacebook%26utm_medium%3Dsocial%26utm_campaign%3DSocialWarfare
https://twitter.com/share?original_referer=/&text=Apache+Web+Server+Hardening+%26+Security+Guide&url=https://geekflare.com/apache-web-server-hardening-security/%3Futm_source%3Dtwitter%26utm_medium%3Dsocial%26utm_campaign%3DSocialWarfare&via=geekflarecom
http://www.stumbleupon.com/submit?url=https://geekflare.com/apache-web-server-hardening-security/&title=Apache+Web+Server+Hardening+%26amp%3B+Security+Guide
https://twitter.com/share?original_referer=/&text=Apache+Web+Server+Hardening+%26+Security+Guide&url=https://geekflare.com/apache-web-server-hardening-security/%3Futm_source%3Dtwitter%26utm_medium%3Dsocial%26utm_campaign%3DSocialWarfare&via=geekflarecom
http://www.stumbleupon.com/submit?url=https://geekflare.com/apache-web-server-hardening-security/&title=Apache+Web+Server+Hardening+%26amp%3B+Security+Guide

Server is often placed at the edge of the network hence it becomes one of the

most vulnerable services to attack. Having default configuration supply much

sensitive information which may help hacker to prepare for an attack the web

server.

The majority of web application attacks are through XSS, Info Leakage,

Session Management and PHP Injection attacks which are due to weak

programming code and failure to sanitize web application infrastructure.

According to the security vendor Cenzic, 96% of tested applications have

vulnerabilities. Below chart from Cenzic shows the vulnerability trend report of

2013.

This practical guide provides you the necessary skill set to secure Apache

Web Server. In this course, we will talk about how to Harden & Secure

Apache Web Server on Unix platform. Following are tested on Apache 2.4.x

and I don’t see any reason it won’t work with Apache 2.2.x.

1. This assumes you have installed Apache on UNIX platform. If not, you

can go through Installation guide. You can also refer very free video

about how to Install Apache, MySQL & PHP.

2. We will call Apache installation directory /opt/apache as $Web_Server

http://www.cenzic.com/downloads/Cenzic_Vulnerability_Report_2014.pdf
https://geekflare.com/apache-2-4-6-installation-on-unix/
https://geekflare.tradepub.com/free/w_lynd116/prgm.cgi

throughout this course.

3. You are advised to take a backup of existing configuration file before

any modification.

Contents

1. Introduction

1.1 Audience

2. Information Leakage

2.1 Remove Server Version Banner

2.2 Disable directory browser listing

2.3 Etag

3. Authorization

3.1 Run Apache from non-privileged account

3.2 Protect binary and configuration directory permission

3.3 System Settings Protection

3.4 HTTP Request Methods

4. Web Application Security

4.1 Cookies

4.1.1 Disable Trace HTTP Request

4.1.2 Set cookie with HttpOnly and Secure flag

4.2 Clickjacking Attack

4.3 Server Side Include

4.4 X-XSS Protection

4.5 Disable HTTP 1.0 Protocol

4.6 Timeout value configuration

5. SSL

5.1 SSL Key

5.2 SSL Cipher

5.3 Disable SSL v2

6. Mod Security

6.1 Download & Installation

6.2 Configuration

6.3 Getting Started

6.3.1 Logging

6.3.2 Enable Rule Engine

6.3.3 Common Attack Type Protection

6.3.4 Change Server Banner

7. General Configuration

7.1 Configure Listen

7.2 Access Logging

7.3 Disable Loading unwanted modules

1.1 Audience

This is designed for Middleware Administrator, Application Support, System

Analyst, or anyone working or eager to learn Hardening & Security guidelines.

Fair knowledge of Apache Web Server & UNIX command is mandatory.

2 . Informat ion Leakage

In default Apache configuration you would have much sensitive information

disclosures, which can be used to prepare for an attack. It’s one of the most

critical tasks for an administrator to understand and secure them. As per

report by Cenzic, 16% of vulnerability is found in Info leakage. We require

some tool to examine HTTP Headers for verification. Let’s do this by install

firebug add-on in Firefox.

Open Firefox

Access https://addons.mozilla.org/en-US/firefox/addon/firebug/

Click on Add to Firefox

http://sucuri.7eer.net/c/245992/212721/3713?u=https%3A%2F%2Fsitecheck.sucuri.net%2F
https://geekflare.com/scan-security-vulnerabilities-to-secure-website/
https://addons.mozilla.org/en-US/firefox/addon/firebug/

 Click on Install Now

Restart Firefox

 You can see firebug icon at right top bar

We will use this icon to open firebug console to view HTTP Headers

information. There are many online tools also available which helps to check

in HTTP header information.

2.1 Rem ove Server Version Banner

I would say this is one of the first things to consider, as you don’t want to

expose what web server version you are using. Exposing version means you

are helping hacker to speedy the reconnaissance process. The default

configuration will expose Apache Version and OS type as shown below.

http://web-sniffer.net/

Implementation:

Go to $Web_Server/conf folder

Modify httpd.conf by using vi editor

Add the following directive and save the httpd.conf

ServerTokens Prod

ServerSignature Off

Restart apache

ServerSignature will remove the version information from the page generated

like 403, 404, 502, etc. by apache web server. ServerTokens will change Header

to production only, i.e. Apache

Verification:

Open Firefox

 Activate firebug by clicking firebug icon at top right side

 Click on Net tab

Hit the URL in address bar

Expand the GET request and you could see Server directive is just

showing Apache, which is much better than exposing version and OS

type.

2.2 Disable directory browser l isting

Disable directory listing in a browser so the visitor doesn’t see what all file

and folders you have under root or subdirectory. Let’s test how does it look

like in default settings.

Go to $Web_Server/htdocs directory

Create a folder and few files inside that

mkdir test

touch hi

touch hello

Now, let’s try to access Apache by http://localhost/test

http://localhost/test

As you could see it reveals what all file/folders you have which are certainly

you don’t want to expose.

Implementation:

Go to $Web_Server/conf directory

 Open httpd.conf using vi

 Search for Directory and change Options directive to None or –Indexes

<Directory /opt/apache/htdocs>

Options None

Order allow,deny

Allow from all

</Directory>

(or)

<Directory /opt/apache/htdocs>

Options -Indexes

Order allow,deny

Allow from all

</Directory>

Restart Apache

Note: if you have multiple Directory directives in your environment, you

should consider doing the same for all.

Verification:

Now, let’s try to access Apache by http://localhost/test

http://localhost/test

 As

you could see, it displays forbidden error instead showing test folder listing.

2.3 Etag

It allows remote attackers to obtain sensitive information like inode number,

multipart MIME boundary, and child process through Etag header. To

prevent this vulnerability, let’s implement it as below. This is required to fix for

PCI compliance.

Implementation:

Go to $Web_Server/conf directory

Add the following directive and save the httpd.conf

FileETag None

Restart apache

Verification:

Open Firefox and access your application

Check HTTP response headers in firebug, you should not see Etag at all.

3. Authorizat ion

3.1 Run Apache from non-pr iv ileged account

Default apache configuration is to run as nobody or daemon. It’s good to use

a separate non-privileged user for Apache. The idea here is to protect other

services running in case of any security hole.

Implementation:

Create a user and group called apache

#groupadd apache

useradd –G apache apache

Change apache installation directory ownership to newly created non-

privileged user

 # chown –R apache:apache /opt/apache

 Go to $Web_Server/conf

 Modify httpd.conf using vi

 Search for User & Group Directive and change as non-privileged

account apache

User apache

Group apache

 Save the httpd.conf

 Restart Apache

Verification:

grep for running http process and ensure it’s running with apache user

ps –ef |grep http

Note: You could see one process is running with root. That’s because Apache

is listening on port 80 and it has to be started with root. We will talk about

how to change port number later in this course.

3.2 Protect binary and conf iguration

directory perm ission

By default, permission for binary and configuration is 755 that mean any user

on a server can view the configuration. You can disallow another user to get

into conf and bin folder.

Implementation:

Go to $Web_Server directory

Change permission of bin and conf folder

 # chmod –R 750 bin conf

Verification:

3.3 System Settings Protection

In a default installation, users can override apache configuration using

.htaccess. if you want to stop users changing your apache server settings,

you can add AllowOverride to None as shown below. This must be done at

the root level.

Implementation:

Go to $Web_Server/conf directory

 Open httpd.conf using vi

 Search for Directory at root level

<Directory />

Options -Indexes

AllowOverride None

</Directory>

 Save the httpd.conf

 Restart Apache

3.4 HT T P Request Methods

HTTP 1.1 protocol support many request methods which may not be required

and some of them are having potential risk. Typically you may just need GET,

HEAD, POST request methods in a web application, which can be configured

in the respective Directory directive. Default apache configuration support

OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, CONNECT method in

HTTP 1.1 protocol.

Implementation:

 Go to $Web_Server/conf directory

 Open httpd.conf using vi

Search for Directory and add following

<LimitExcept GET POST HEAD>

deny from all

</LimitExcept>

4. Web Appl icat ion Security

Apache web server misconfiguration or not hardened properly can exploit

web application. It’s critical to harden your web server configuration.

4.1 Cookies

4.1.1 Disable T race HT T P Request

By default Trace method is enabled in Apache web server. Having this

enabled can allow Cross Site Tracing attack and potentially giving an option

to a hacker to steal cookie information. Let’s see how it looks like in default

configuration.

 Do a telnet web server IP with listening port

 Make a TRACE request as shown below

#telnet localhost 80

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

TRACE / HTTP/1.1 Host: test

HTTP/1.1 200 OK

Date: Sat, 31 Aug 2013 02:13:24 GMT

Server: Apache

Transfer-Encoding: chunked

Content-Type: message/http 20

TRACE / HTTP/1.1

Host: test 0

Connection closed by foreign host.

#

As you could see in above TRACE request it has responded my query. Let’s

disable it and test it.

Implementation:

 Go to $Web_Server/conf directory

Add the following directive and save the httpd.conf

 TraceEnable off

 Restart apache

Verification:

Do a telnet web server IP with listen port and make a TRACE request as

shown below

#telnet localhost 80

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

TRACE / HTTP/1.1 Host: test

HTTP/1.1 405 Method Not Allowed

Date: Sat, 31 Aug 2013 02:18:27 GMT

Server: Apache Allow:

Content-Length: 223

Content-Type: text/html; charset=iso-8859-1 <!DOCTYPE HTML PUBLI

C "-//IETF//DTD HTML 2.0//EN"> <html><head> <title>405 Method Not

Allowed</title> </head><body> <h1>Method Not Allowed</h1>

<p>The requested method TRACE is not allowed for the URL /.</p> </b

ody></html>

Connection closed by foreign host.

#

As you could see in above TRACE request it has blocked my request with

HTTP 405 Method Not Allowed. Now, this web server doesn’t allow TRACE

request and help in blocking Cross Site Tracing attack.

4.1.2 Set cookie with HttpOnly and Secure

f lag

You can mitigate most of the common Cross Site Scripting attack using

HttpOnly and Secure flag in a cookie. Without having HttpOnly and Secure, it

is possible to steal or manipulate web application session and cookies and

it’s dangerous.

Implementation:

 Ensure mod_headers.so is enabled in your httpd.conf

 Go to $Web_Server/conf directory

 Add the following directive and save the httpd.conf

 Header edit Set-Cookie ^(.*)$ $1;HttpOnly;Secure

 Restart apache

Verification:

Open Firefox and access your application

Check HTTP response headers in firebug, you should see Set-Cookie is

flagged with HttpOnly and Secure as shown below.

4.2 Clickjacking Attack

Clickjacking is well-known web application vulnerabilities. You can refer my

previous post Secure Your Web Site from Clickjacking Attack.

Implementation:

 Ensure mod_headers.so is enabled in your httpd.conf

 Go to $Web_Server/conf directory

 Add the following directive and save the httpd.conf

 Header always append X-Frame-Options SAMEORIGIN

https://geekflare.com/secure-apache-from-clickjacking-with-x-frame-options/

 Restart apache

Verification:

Open Firefox and access your application

Check HTTP response headers in firebug, you should see X-Frame-

Options as shown below.

4.3 Server Side Include

Server Side Include (SSI) has a risk of increasing the load on the server. If you

have shared the environment and heavy traffic web applications you should

consider disabling SSI by adding Includes in Options directive. SSI attack

allows the exploitation of a web application by injecting scripts in HTML

pages or executing codes remotely.

Implementation:

Go to $Web_Server/conf directory

 Open httpd.conf using vi

 Search for Directory and add Includes in Options directive

<Directory /opt/apache/htdocs>

Options –Indexes -Includes

Order allow,deny

Allow from all

</Directory>

Restart Apache

Note: if you have multiple Directory directives in your environment, you

should consider doing the same for all.

4.4 X-XSS Protection

Cross Site Scripting (XSS) protection can be bypassed in many browsers. You

can apply this protection for a web application if it was disabled by the user.

This is used by a majority of giant web companies like Facebook, twitter,

Google, etc.

Implementation:

Go to $Web_Server/conf directory

Open httpd.conf using vi and add following Header directive

 Header set X-XSS-Protection “1; mode=block”

 Restart Apache

Verification:

 Open Firefox and access your application

 Check HTTP response headers in firebug, you should see XSS Protection

is enabled and a mode is blocked.

4.5 Disable HT T P 1.0 Protocol

When we talk about security, we should protect as much we can. So why do

we use older HTTP version of the protocol, let’s disable them as well? HTTP

1.0 has security weakness related to session hijacking. We can disable this by

using the mod_rewrite module.

Implementation:

Ensure to load mod_rewrite module in httpd.conf file

 Enable RewriteEngine directive as following and add Rewrite condition

to allow only HTTP 1.1

RewriteEngine On

RewriteCond %{THE_REQUEST} !HTTP/1.1$

RewriteRule .* - [F]

4.6 T im eout value conf iguration

By default Apache time-out value is 300 seconds, which can be a victim of

Slow Loris attack and DoS. To mitigate this you can lower the timeout value

to maybe 60 seconds.

Implementation:

Go to $Web_Server/conf directory

Open httpd.conf using vi

 Add following in httpd.conf

 Timeout 60

5. SSL

Having SSL is an additional layer of security you are adding into Web

Application. However, default SSL configuration leads to certain

vulnerabilities and you should consider tweaking those configurations. We

require some tool to verify SSL settings. There are much available however, I

would use SSL-Scan free tool. You can download from

http://sourceforge.net/projects/sslscan/

5.1 SSL Key

Breaching SSL key is hard, but not impossible. It’s just matter of

computational power and time. As you might know using a 2009-era PC

cracking away for around 73 days you can reverse engineer a 512-bit key. So

the higher key length you have, the more complex it becomes to break SSL

key. The majority of giant Web Companies use 2048 bit key, as below so why

don’t we?

 Outlook.com

 Microsoft.com

http://www.ticalc.org/archives/news/articles/14/145/145154.html

 Live.com

 Skype.com

 Apple.com

 Yahoo.com

 Bing.com

 Hotmail.com

 Twitter.com

Implementation:

 You can use openssl to generate CSR with 2048 bit as below.

 Generate self-signed certificate

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout localhost.

key -out localhost.crt

 Generate new CSR and private key

openssl req -out localhost.csr -new -newkey rsa:2048 -nodes -keyout loc

alhost.key

 Add Personal Cert, Signer Cert and Key file in httpd-ssl.conf file under

below directive

SSLCertificateFile # Personal Certificate

SSLCertificateKeyFile # Key File

SSLCACertificateFile # Signer Cert file

Verification:

Execute sslscan utility with the following parameter. Change localhost to your

actual domain name.

 sslscan localhost | grep –i key

As you can see current SSL key is 2048 bit, which is stronger.

5.2 SSL Cipher

SSL Cipher is an encryption algorithm, which is used as a key between two

computers over the Internet. Data encryption is the process of converting

plain text into secret ciphered codes. It’s based on your web server SSL

Cipher configuration the data encryption will take place. So it’s important to

configure SSL Cipher, which is stronger and not vulnerable. Let’s validate the

Cipher accepted in current SSL configuration. We will use sslscan utility to

validate as below command. Change localhost to your actual domain name.

sslscan –no-failed localhost

As you could see above, in current configuration DHE, AES, EDH, RC4 cipher

is accepted. Now if you are performing penetration test or PCI compliance

test, your report will say RC4 Cipher detected. Lately, it was found that RC4 is

a weak cipher and to pass certain security test, you must not accept RC4 or

any weak cipher. You should also ensure not to accept any cipher, which is

less than 128 bits.

Implementation:

Go to $Web_Server/conf/extra folder

 Modify SSLCipherSuite directive in httpd-ssl.conf as below to reject RC4

 SSLCipherSuite HIGH:!MEDIUM:!aNULL:!MD5:!RC4

 Save the configuration file and restart apache server

Note: if you have many weak ciphers in your SSL auditing report, you can

easily reject them adding ! at beginning. For ex – to reject RC4: !RC4

Verification: Again, we will use sslscan utility to validate as below command.

Change localhost to your actual domain name.

sslscan –no-failed localhost

 So now we don’t

see RC4 anymore as accepted Cipher. It’s good to reject any low, medium,

null or vulnerable cipher to keep yourself tension free from getting attacked.

You can also scan your domain against Qualys SSL Labs to check if you have

weak or vulnerable cipher in your environment.

https://www.ssllabs.com/ssltest/index.html

5.3 Disable SSL v2

SSL v2 has many security flaws and if you are working towards penetration

test or PCI compliance then you are expected to close security finding to

disable SSL v2. Any SSL v2 communication may be vulnerable to a Man-in-

The-Middle attack that could allow data tampering or disclosure. Let’s

implement apache web server to accept only latest SSL v3 and reject SSL v2

connection request.

Implementation:

Go to $Web_Server/conf/extra folder

Modify SSLProtocol directive in httpd-ssl.conf as below to accept only

SSL v3 and TLS v1

 SSLProtocol –ALL +SSLv3 +TLSv1

Verification:

Let’s use sslscan utility to validate as below command. Change localhost to

your actual domain name.

sslscan –no-failed localhost

 As you could see

above, accepted is only SSLv3 and TLSv1, which is safe from SSLv2

vulnerabilities.

6. Mod Security

Mod Security is an open-source Web Application Firewall, which you can use

with Apache. It comes as a module which you have to compile and install. If

you can’t afford commercial web application firewall, this would be a good

choice to go for it. Mod Security says: In order to provide generic web

applications protection, the Core Rules use the following techniques:

HTTP Protection – detecting violations of the HTTP protocol and a

locally defined usage policy

Real-time Blacklist Lookups – utilizes 3rd Party IP Reputation

Web-based Malware Detection – identifies malicious web content by

check against the Google Safe Browsing API.

HTTP Denial of Service Protections – defense against HTTP Flooding

and Slow HTTP DoS Attacks.

Common Web Attacks Protection – detecting common web

application security attack

Automation Detection – Detecting bots, crawlers, scanners and

another surface malicious activity

Integration with AV Scanning for File Uploads – detects malicious

files uploaded through the web application.

Tracking Sensitive Data – Tracks Credit Card usage and blocks

leakages.

Trojan Protection – Detecting access to Trojans horses.

Identification of Application Defects – alerts on application

misconfigurations.

Error Detection and Hiding – Disguising error messages sent by the

server.

6.1 Download & Instal lation

Following prerequisites must be installed on the server where you wish to use

Mod Security with Apache. If any one of these doesn’t exist then Mod

Security compilation will fail. You may use yum install on Linux or Centos to

install these packages.

apache 2.x or higher

libpcre package

 libxml2 package

liblua package

libcurl package

 libapr and libapr-util package

 mod_unique_id module bundled with Apache web server

Now, let’s download the latest stable version of Mod Security 2.7.5 from

http://www.modsecurity.org/download/

Transfer downloaded file to /opt/apache

Extract modsecurity-apache_2.7.5.tar.gz

gunzip –c modsecurity-apache_2.7.5.tar.gz | tar xvf –

Go to extracted folder modsecurity-apache_2.7.5

cd modsecurity-apache_2.7.5

Run the configure script including apxs path to existing Apache

./configure –with-apxs=/opt/apache/bin/apxs

Compile & install with make script

make

#make install

Once installation is done, you would see mod_security2.so in modules

folder under /opt/apache as shown below

Now this concludes, you have installed Mod Security module in existing

http://www.modsecurity.org/download/

Apache web server.

6.2 Conf iguration

In order to use Mod security feature with Apache, we have to load mod

security module in httpd.conf. The mod_unique_id module is pre-requisite

for Mod Security. This module provides an environment variable with a

unique identifier for each request, which is tracked and used by Mod Security.

Add following a line to load module for Mod Security in httpd.conf and

save the configuration file

LoadModule unique_id_module modules/mod_unique_id.so

LoadModule security2_module modules/mod_security2.so

 Restart apache web server

Mod Security is now installed! Next thing you have to do is to install Mod

Security core rule to take a full advantage of its feature. Latest Core Rule can

be downloaded from following a link, which is free.

https://github.com/SpiderLabs/owasp-modsecurity-crs/zipball/master

Copy downloaded core rule zip to /opt/apache/conf folder

Unzip core rule file, you should see the extracted folder as shown below

You may wish to rename the folder to something short and easy to

remember. In this example, I will rename to crs.

https://github.com/SpiderLabs/owasp-modsecurity-crs/zipball/master

 Go to crs folder and rename

modsecurity_crs10_setup.conf.example to

modsecurity_crs10_setup.conf

Now, let’s enable these rules to get it working with Apache web server.

 Add following in httpd.conf

<IfModule security2_module>

Include conf/crs/modsecurity_crs_10_setup.conf

Include conf/crs/base_rules/*.conf

</IfModule>

In above configuration, we are loading Mod Security main configuration file

modsecurity_crs_10_setup.conf and base rules base_rules/*.conf

provided by Mod Security Core Rules to protect web applications.

 Restart apache web server

You have successfully configured Mod Security with Apache! Well done.

Now, Apache Web server is protected by Mod Security web application

firewall.

6.3 Getting Started

Lets get it started with some of the important configuration in Mod Security

to harden & secure web applications. In this section, we will do all

configuration modification in

/opt/apache/conf/crs/modsecurity_crs_10_setup.conf We will refer

/opt/apache/conf/crs/modsecurity_crs_10_setup.conf as setup.conf in

this section for example purpose. It’s important to understand what are the

OWASP rules are provided in free. There are two types of rules provided by

OWASP.

Base Rules – these rules are heavily tested and probably false alarm ratio is

less.

Experimental Rules – these rules are for an experimental purpose and you

may have the high false alarm. It’s important to configure, test and

implement in UAT before using these in a production environment.

Optional Rules – these optional rules may not be suitable for the entire

environment. Based on your requirement you may use them. If you are

looking for CSRF, User tracking, Session hijacking, etc. protection then you

may consider using optional rules. We have the base, optional and

experimental rules after extracting the downloaded crs zip file from OWASP

download page. These rules configuration file is available in crs/base_rules,

crs/optional_rules and crs/experimental_rules folder. Let’s get familiar with

some of the base rules.

modsecurity_crs_20_protocol_violations.conf:This rule is protecting

from Protocol vulnerabilities like response splitting, request smuggling,

using non-allowed protocol (HTTP 1.0).

modsecurity_crs_21_protocol_anomalies.conf:This is to protect

from a request, which is missing with Host, Accept, User-Agent in the

header.

modsecurity_crs_23_request_limits.conf:This rule has the

dependency on application specific like request size, upload size, a

length of a parameter, etc.

modsecurity_crs_30_http_policy.conf:This is to configure and protect

allowed or disallowed method like CONNECT, TRACE, PUT, DELETE, etc.

modsecurity_crs_35_bad_robots.conf:Detect malicious robots

modsecurity_crs_40_generic_attacks.conf:This is to protect from OS

command injection, remote file inclusion, etc.

modsecurity_crs_41_sql_injection_attacks.conf:This rule to protect

SQL and blind SQL inject request.

modsecurity_crs_41_xss_attacks.conf:Protection from Cross Site

Scripting request.

modsecurity_crs_42_tight_security.conf:Directory traversal detection

and protection.

modsecurity_crs_45_trojans.conf:This rule to detect generic file

management output, uploading of http backdoor page, known

signature.

modsecurity_crs_47_common_exceptions.conf:This is used as an

exception mechanism to remove common false positives that may be

encountered suck as Apache internal dummy connection, SSL pinger,

etc.

6.3.1 Logging

Logging is one of the first things to configure so you can have logs created

for what Mod Security is doing. There are two types of logging available;

Debug & Audit log.

Debug Log: this is to duplicate the Apache error, warning and notice

messages from the error log.

Audit Log: this is to write the transaction logs that are marked by Mod

Security rule Mod Security gives you the flexibility to configure Audit, Debug

or both logging. By default configuration will write both logs. However, you

can change based on your requirement. The log is controlled in

SecDefaultAction directive. Let’s look at default logging configuration in

setup.conf

SecDefaultAction “phase:1,deny,log”

To log Debug, Audit log – use “log” To log only audit log – use

“nolog,auditlog” To log only debug log – use “log,noauditlog” You can

specify the Audit Log location to be stored which is controlled by SecAuditLog

directive. Let’s write audit log into /opt/apache/logs/modsec_audit.log by

adding as shown below.

Implementation:

Add SecAuditLog directive in setup.conf and restart Apache Web Server

 SecAuditLog /opt/apache/logs/modsec_audit.log

After the restart, you should see modsec_audit.log getting generated as

shown below.

6.3.2 Enable Rule Engine

By default Engine Rule is Off that means if you don’t enable Rule Engine you

are not utilizing all the advantages of Mod Security. Rule Engine enabling or

disabling is controlled by SecRuleEngine directive.

Implementation:

Add SecRuleEngine directive in setup.conf and restart Apache Web

Server

 SecRuleEngine On

There are three values for SecRuleEngine:

On – to enable Rule Engine

Off – to disable Rule Engine

DetectionOnly – enable Rule Engine but never executes any actions

like block, deny, drop, allow, proxy or redirect

Once Rule Engine is on – Mod Security is ready to protect with some of the

common attack types.

6.3.3 Com m on Attack T ype Protection

Now web server is ready to protect with common attack types like XSS, SQL

Injection, Protocol Violation, etc. as we have installed Core Rule and turned

on Rule Engine. Let’s test few of them.

XSS Attack:-

 Open Firefox and access your application and put <script> tag at the

end or URL as shown below

 Monitor the modsec_audit.log in apache/logs folder

As you can see Mod Security blocks request as it contains <script> tag which

is the root of XSS attack.

Directory Traversal Attack:- Directory traversal attacks can create a lot of

damage by taking advantage of this vulnerabilities and access system related

file. Ex – /etc/passwd, .htaccess, etc.

 Open Firefox and access your application with directory traversal

 Monitor the modsec_audit.log in apache/logs folder

 http://localhost/?../.../boot

As you can see Mod Security blocks request as it contains directory

traversal.

6.3.4 Change Server Banner

Earlier in this guide, you learned how to remove Apache and OS type, version

help of ServerTokens directive. Let’s go one step ahead, how about keeping

server name whatever you wish? It’s possible with SecServerSignature

directive in Mod Security. You see it’s an interesting.

Note: in order to use Mod Security to manipulate Server Banner from a

header, you must set ServerTokesn to Full in httpd.conf of Apache web server.

Implementation:

Add SecServerSignature directive with your desired server name in

setup.conf and restart Apache Web Server

 SecServerSignature YourServerName

Ex:

[/opt/apache/conf/crs] #grep SecServer modsecurity_crs_10_setup.conf

SecServerSignature chandank.com

[/opt/apache/conf/crs] #

Verification:

 Open Firefox and access your application

 Check HTTP response headers in firebug, you should see Server banner

is changed now as shown below.

7. General Configurat ion

We will talk about some of the general configuration as best practice.

7.1 Conf igure Listen

When you have multiple interface and IP’s on a single server, it’s

recommended to have Listen directive configured with absolute IP and Port

number. When you leave apache configuration to Listen on all IP’s with some

port number, it may create the problem in forwarding HTTP request to some

other web server. This is quite common in the shared environment.

Implementation:

Configure Listen directive in httpd.conf with absolute IP and port as

shown example below

 Listen 10.10.10.1:80

7.2 Access Logging

It’s essential to configure access log properly in your web server. Some of the

important parameter to capture in the log would be the time taken to serve

the request, SESSION ID. By default, apache is not configured to capture

these data. You got to configure them manually as following.

Implementation:

To capture time taken to serve the request and SESSION ID in access

log

 Add %T & %sessionID in httpd.conf under LogFormat directive

 LogFormat "%h %l %u %t "%{sessionID}C" "%r" %>s %b %T" common

You can refer http://httpd.apache.org/docs/2.2/mod/mod_log_config.html for

a complete list of parameter supported in LogFormat directive in Apache

Web Server.

7.3 Disable Loading unwanted m odules

If you have compiled and installed with all modules then there are high

chances you will have many modules loaded in Apache, which may not be

required. Best practice is to configure Apache with required modules in your

web applications. Following modules are having security concerns and you

http://httpd.apache.org/docs/2.2/mod/mod_log_config.html

Random thoughts!

might be interested in disabling in httpd.conf of Apache Web Server.

WebDAV (Web-based Distributed Authoring and Versioning) This module

allows remote clients to manipulate files on the server and subject to various

denial-of-service attacks. To disable comment following in httpd.conf

#LoadModule dav_module modules/mod_dav.so

#LoadModule dav_fs_module modules/mod_dav_fs.so

#Include conf/extra/httpd-dav.conf

Info Module The mod_info module can leak sensitive information using

.htaccess once this module is loaded. To disable comment following in

httpd.conf

#LoadModule info_module modules/mod_info.so

Reference: This wouldn’t be possible without guidance from the following

link:

http://httpd.apache.org/docs/2.4/

http://www.modsecurity.org/documentation/

https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project

So that was some of the best practices you can use to secure your Apache

web server. I hope they are useful to you.

A Quick Guide to HTTP Status Codes [with Infographics]

http://httpd.apache.org/docs/2.4/
http://www.modsecurity.org/documentation/
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
http://www.facebook.com/share.php?u=https%3A%2F%2Fgeekflare.com%2Fapache-web-server-hardening-security%2F%3Futm_source%3Dfacebook%26utm_medium%3Dsocial%26utm_campaign%3DSocialWarfare
https://twitter.com/share?original_referer=/&text=Apache+Web+Server+Hardening+%26+Security+Guide&url=https://geekflare.com/apache-web-server-hardening-security/%3Futm_source%3Dtwitter%26utm_medium%3Dsocial%26utm_campaign%3DSocialWarfare&via=geekflarecom
http://www.stumbleupon.com/submit?url=https://geekflare.com/apache-web-server-hardening-security/&title=Apache+Web+Server+Hardening+%26amp%3B+Security+Guide
https://geekflare.com/http-status-code-infographics/

	Skip links
	Main navigation
	Apache Web Server Hardening & Security Guide
	1. Introduction
	1.1 Audience

	2. Information Leakage
	2.1 Remove Server Version Banner
	2.2 Disable directory browser listing
	2.3 Etag

	3. Authorization
	3.1 Run Apache from non-privileged account
	3.2 Protect binary and configuration directory permission
	3.3 System Settings Protection
	3.4 HTTP Request Methods

	4. Web Application Security
	4.1 Cookies
	4.1.1 Disable Trace HTTP Request
	4.1.2 Set cookie with HttpOnly and Secure flag
	4.2 Clickjacking Attack
	4.3 Server Side Include
	4.4 X-XSS Protection
	4.5 Disable HTTP 1.0 Protocol
	4.6 Timeout value configuration

	5. SSL
	5.1 SSL Key
	5.2 SSL Cipher
	5.3 Disable SSL v2

	6. Mod Security
	6.1 Download & Installation
	6.2 Configuration
	6.3 Getting Started
	6.3.1 Logging
	6.3.2 Enable Rule Engine
	6.3.3 Common Attack Type Protection
	6.3.4 Change Server Banner

	7. General Configuration
	7.1 Configure Listen
	7.2 Access Logging
	7.3 Disable Loading unwanted modules
	Random thoughts!
	A Quick Guide to HTTP Status Codes [with Infographics]
	WebSphere 8.5 Performance Tuning Course
	Useful DQL
	configure: error: Not found mysqlclient library – zabbix
	amqsput command not find – IBM MQ on Linux

	Reader Interactions
	Comments
	Leave a Reply

	Primary Sidebar
	Footer
	Category
	Search

